
A Compiled Declarative Abstraction for
Maestro-Based Android UI Testing: A

Domain-Specific Language and Kotlin Compiler as
a Test Abstraction Layer

Seminar Paper

Author: Denis Schüle
Advisor: FH-Ass.Prof. Andreas Bilke, MSc
Repository: https://gitlab.ct.fh-salzburg.ac.at/fhs48282/thesis

Salzburg, Austria, 30.01.2026



A Compiled Declarative Abstraction for Maestro-Based
Android UI Testing: A Domain-Specific Language and

Kotlin Compiler as a Test Abstraction Layer

Denis Schüle
dschuele.mmtb-m2024@fh-salzburg.ac.at
Salzburg University of Applied Sciences

ABSTRACT

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ae-
nean venenatis nulla vestibulum dignissim molestie. Quisque
tristique tortor vitae condimentum egestas. Donec vitae odio
et quam porta iaculis ut non metus. Sed fermentum mau-
ris non viverra pretium. Nullam id facilisis purus, et aliquet
sapien. Pellentesque eros ex, faucibus non finibus a, pellen-
tesque eu nibh. Aenean odio lacus, fermentum eu leo in,
dapibus varius dolor. Lorem ipsum dolor sit amet, consecte-
tur adipiscing elit. Proin sit amet ornare velit. Donec sit amet
odio eu leo viverra blandit. Ut feugiat justo eget sapien portti-
tor, sit amet venenatis lacus auctor. Curabitur interdum ligula
nec metus sollicitudin vestibulum. Fusce placerat augue eu
orci maximus, id interdum tortor efficitur.

1 INTRODUCTION

Mobile applications have become a core delivery channel for
digital services, and their increasing feature richness and GUI
complexity make it difficult to ensure correct functionality
and behaviour under frequent updates and releases (Eke et
al., 2025; Nie et al., 2023). In this context, GUI testing aims
to verify that the application displays the correct information
and that user interactions drive the system into the intended
states. However, GUI testing is widely described as resource
expensive and tedious, partly because GUI widgets are mu-
tually dependent and interactions can trigger non-local effects
across views and screens . This has fuelled continued research
and practice interest in more effective and automatable GUI
testing approaches for mobile apps (Nie et al., 2023).

In practical Android end-to-end testing, a recurring chal-
lenge is that executable UI tests are often written as step-
by-step interaction scripts that encode detailed UI mechanics
(e.g., widget-level actions and selectors). Such specifications
are costly to keep consistent with evolving requirements and
artefacts: manually ensuring consistency when requirements
change is described as extremely time-consuming and error-
prone (Silva & Fitzgerald, 2020). This problem becomes
more pronounced for GUI-driven systems, where subtle UI
or flow changes can invalidate many interaction steps even if
the underlying behavioural requirement remains stable (Nie
et al., 2023).

Tools that support higher-level specification formats can
improve readability, but they do not automatically solve the
core issue that many test suites lack an explicit, domain-
level behavioural representation that remains stable under UI

change. The resulting maintenance burden is not merely syn-
tactic: inconsistencies can arise when requirements or sto-
ries lose synchronisation with other artefacts, producing mis-
matches between intended and checked behaviour (Silva &
Fitzgerald, 2021). This thesis addresses this gap in the specific
setting of Maestro-based Android UI testing by investigating
whether a dedicated abstraction layer can separate domain in-
tent from low-level execution steps.

Behaviour-Driven Development (BDD) structures user re-
quirements as stories with acceptance criteria expressed as
scenarios in a Given–When–Then format, where scenarios
can be interpreted as state transitions (Silva & Fitzgerald,
2021). BDD is often positioned as enabling executable re-
quirements and “living documentation” that communicates
system status with respect to acceptance criteria (Silva &
Fitzgerald, 2021). Importantly, BDD scenarios can be written
at different abstraction levels: some steps use domain vocab-
ulary (declarative) while others describe detailed user-system
interaction (imperative), and this choice affects what can be
reliably extracted or assessed from the text (Silva & Fitzger-
ald, 2021).

Prior work highlights that free-form story text makes auto-
mated interpretation and consistent downstream use difficult,
motivating controlled natural language (CNL) and DSL-like
constraints to reduce ambiguity and support reliable process-
ing (Silva & Fitzgerald, 2021). While restricting vocabulary
can reduce flexibility, it can also establish a shared termi-
nology and mitigate miscommunication, ambiguity, and in-
completeness in requirements and testing specifications (Silva
& Fitzgerald, 2020, 2021). In parallel, mobile GUI test-
ing research frequently uses model-based approaches; sur-
veys report model-based methods as the most common fam-
ily, but also note that model generation remains challenging
and needs techniques that reduce modelling effort (Nie et al.,
2023).

Taken together, these observations suggest a specific op-
portunity: combine (i) a constrained, domain-facing scenario
language (to improve stability and processability) with (ii)
a generator/translation pipeline (to keep executable tests in
sync), rather than relying on runtime glue and ad-hoc man-
ual updates.

This thesis proposes a Compiled Declarative Abstraction
(CDA) for Maestro-based Android UI testing. The central
idea is to specify interaction scenarios in a constrained, BDD-
inspired external DSL—designed to encourage declarative,
domain-level steps—then compile these specifications into



executable Maestro YAML flows. The approach is motivated
by evidence that controlled vocabularies and structured story
formats can support more consistent, comprehensive, and
communicable specifications, reducing gaps between stake-
holders and downstream artefacts (Silva & Fitzgerald, 2020,
2021).

With Maestro1 , tests are expressed as UI interaction se-
quences, defined via YAML “flow” files that specify actions
and assertions, and executed on a running mobile applica-
tion. Because this style of testing exercises only externally
observable behaviour, Maestro is best positioned as a primar-
ily black-box approach for system-level validation (Eke et al.,
2025).

Conceptually, the CDA treats the DSL specification (to-
gether with an explicit mapping from domain element names
to GUI interaction elements) as a lightweight test model; com-
pilation then becomes a systematic model-to-test derivation
step. This aligns with the broader motivation to promote au-
tomated verification in an ever-changing environment, while
keeping the specification readable and tightly connected to
acceptance-criteria-style scenarios (Silva & Fitzgerald, 2020,
2021).

1.1 Research Questions

RQ1 To what extent can a BDD-inspired DSL specify the
interaction scenarios of a Jetpack Compose Android app
in a way that is consistently translatable into executable
Maestro tests?

RQ2 How does the CDA approach (DSL + compiler) com-
pare to manually written Maestro tests in maintenance
effort and error-proneness when adapting to UI and be-
haviour changes?

1.2 Hypotheses

H1 The DSL can specify all or almost all core scenarios with-
out inline Maestro code, and compiled tests exhibit the
intended behaviour.

H2 Under realistic change scenarios, CDA requires less au-
thored change (e.g., time and Lines of Test Specifica-
tion) than the manual Maestro baseline.

H3

1.3 Contributions

This thesis contributes a Compiled Declarative Abstraction
(CDA) for Maestro-based Android UI testing. Concretely,
it provides: (i) a BDD-inspired external DSL for specifying
mobile interaction scenarios at a domain level, (ii) a loca-
tor configuration scheme and mapping/ambiguity policy that
separates semantic element names from concrete selectors,
(iii) a Kotlin-based compilation pipeline (ANTLR parsing,
AST, code generation) that translates DSL scenarios into ex-
ecutable Maestro YAML flows with early error reporting for

1https://maestro.dev/

unsupported or ambiguous specifications, and (iv) an empir-
ical evaluation comparing the CDA approach against a best-
practice manual Maestro baseline with respect to expressive-
ness/translation reliability and maintenance effort and error-
proneness under change.

1.4 Thesis Outline
Section 2 reviews related work and positions the thesis in mo-
bile GUI testing, BDD-style specifications, model-based test-
ing ideas, and test abstraction patterns. Section 3 introduces
the CDA concept and the underlying assumptions, including
how scenarios, screens, and locators are represented and how
correctness is operationalised. Section 4 details the design and
implementation of the DSL, locator mapping, and the Kotlin
compiler that generates Maestro YAML. Section 5 describes
the case application and the two test suites (CDA-generated
and manual Maestro) used in the study. Section 6 presents
the evaluation methodology, metrics, and results for the re-
search questions. Section 7 discusses the findings, limitations,
threats to validity, and implications for test abstraction design.
Section 8 concludes the thesis and outlines directions for fu-
ture work.

2 RELATED WORK

Introduce why this specific related work is important for your
own work. Which areas do you cover and why? What do you
take as inspiration and what do you do differently/improve
upon?

3 METHODS

This chapter explains and justifies the data and methods used
in the thesis, detailing the chosen methodology’s suitability
for the research question and situating it in relation to existing
approaches discussed in the Related Work section.

4 (OPTIONAL) IMPLEMENTATION

Provide implementation details such as the used software and
our software architecture, highlight your own solutions to en-
countered difficulties. Describe relevant iterations of your im-
plementation.

See code ?? for high efficiency code.

5 RESULTS

This section details the technical and methodological imple-
mentation of the methods, including their adaptation to the
underlying database and the developed solution to the prob-
lem.

6 DISCUSSION

Discuss your results to answer your research question. Does
your data support you hypotheses? Put your results into per-
spective by situating it in the research field/related work. Out-
line limitations.

7 CONCLUSION AND OUTLOOK

Summarize your work and future work.

2

https://maestro.dev/


REFERENCES

Eke, N., Salihu, I., Usman, A., Ibrahim, R., & Mshelia,
Y. (2025). A survey of automated testing tech-
niques for android-based mobile applications. Nig.
J. Tech., 44 (2), 311–337. https://doi.org/10.4314/
njt.v44i2.15

Nie, L., Said, K. S., Ma, L., Zheng, Y., & Zhao, Y. (2023). A
systematic mapping study for graphical user inter-
face testing on mobile apps. IET Software, 17 (3),
249–267. https://doi.org/10.1049/sfw2.12123

Silva, T. R., & Fitzgerald, B. (2020). Interactive Workshop on
the Industrial Application of Verification and Test-
ing ETAPS 2020 Workshop (InterAVT 2020).

Silva, T. R., & Fitzgerald, B. (2021). Empirical Findings on
BDD Story Parsing to Support Consistency Assur-
ance between Requirements and Artifacts. Evalua-
tion and Assessment in Software Engineering, 266–
271. https://doi.org/10.1145/3463274.3463807

This work has the following word count
(counted by texcount):

3

https://doi.org/10.4314/njt.v44i2.15
https://doi.org/10.4314/njt.v44i2.15
https://doi.org/10.1049/sfw2.12123
https://doi.org/10.1145/3463274.3463807

	Introduction
	Research Questions
	Hypotheses
	Contributions
	Thesis Outline

	Related Work
	Methods
	(Optional) Implementation
	Results
	Discussion
	Conclusion and Outlook

